Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

Kinematics and Force Transmission Analysis of a Decoupled Remote Center of Motion Mechanism Based on Intersecting Planes

Abstract

A decoupled mechanism based on intersecting planes that can be considered as a parallel mechanism with two arms is presented in this paper. The end-effector is connected to the base through two planar serial arms. The new specific characteristics of novel mechanism allow the generation of a remote center of motion (RCM) possessing two decoupled rotational degrees-of-freedom (DoF) and a tanslational DoF. It has a simpler control scheme and a larger workspace due to the decoupling characteristics of this mechanism when compared with the RCM mechanism based on intersecting planes proposed by Li et al. This mechanism also eliminates the singularity inside its workspace that impairs the original mechanism. In the final part of this paper, through an analysis of the force transmission performance, we derive a method to adjust the length of the linkage to optimize its force transmission performance.
Read More
Journal of Mechanisms and Robotics Open Issues