Latest Papers

ASME Journal of Mechanisms and Robotics

  • Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
    on August 31, 2023 at 12:00 am

    AbstractHumans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

Contact Kinematics Between Three-Dimensional Rigid Bodies With General Surface Parameterization


This paper provides an improvement of classic Montana’s contact kinematics equations considering non-orthogonal object parameterizations. In Montana’s model, the reference frame used to define the relative motion between two rigid bodies in three-dimensional space is chosen as the Gauss frame, assuming there is an orthogonal coordinate system on the object surface. To achieve global orthogonal parameterizations on arbitrarily shaped object surfaces, we define the relative motion based on the reference frame field, which is the orthogonalization of the surface natural basis at every contact point. The first- and second-order contact kinematics, including the velocity and acceleration analysis of the relative rolling, sliding, and spinning motion, are reformulated based on the reference frame field and the screw theory. We use two simulation examples to illustrate the proposed method. The examples are based on simple non-orthogonal surface parameterizations, instead of seeking for global orthogonal parameterizations on the surfaces.
Read More
Journal of Mechanisms and Robotics Open Issues