Latest Papers

ASME Journal of Mechanisms and Robotics

  • A Small-Scale Integrated Jumping-Crawling Robot: Design, Modeling, and Demonstration
    on June 16, 2025 at 12:00 am

    AbstractThe small jumping-crawling robot improves its obstacle-crossing ability by selecting appropriate locomotion methods. However, current research on jumping-crawling robots remains focused on enhancing specific aspects of performance, and several issues still exist, including nonadjustable gaits, poor stability, nonadjustable jumping posture, and poor motion continuity. This article presents a small jumping-crawling robot with decoupled jumping and crawling mechanisms, offline adjustable gaits, autonomous self-righting, autonomous steering, and certain slope-climbing abilities. The crawling mechanism adopts a partially adjustable Klann six-bar linkage, which can generate four stride lengths and three gaits. The jumping mechanism is designed as a six-bar linkage with passive compliance, and an active clutch allows energy storage and release in any state. The autonomous self-righting mechanism enables the robot to self-right after tipping over, meanwhile providing support, steering, and posture adjustment functions. Prototype experiments show that the designed robot demonstrates good motion stability and can climb a 45 deg slope without tipping over. The robot shows excellent steering performance, with a single action taking 5 s and achieving a steering angle of 11.5 deg. It also exhibits good motion continuity, with an average recovery time of 12 s to return to crawling mode after a jump. Crawling experiments on rough terrain demonstrate the feasibility of applying the designed robot in real-world scenarios.

Supernumerary Robotic Limbs to Assist Human Walking With Load Carriage

Abstract

Walking with load carriage is a common requirement for individuals in many situations. Legged exoskeletons can transfer the load weight to the ground with rigid-leg structures, thus reducing the load weight borne by the human user. However, the inertia of paralleled structures and the mechanical joint tend to disturb natural motions of human limbs, leading to high-energy consumption. Different from exoskeletons, Supernumerary Robotic Limbs (SuperLimbs) are kinematically independent of the human limbs, thus avoiding the physical interference with the human limbs. In this paper, a SuperLimb system is proposed to assist the human walking with load carriage. The system has two rigid robotic limbs, and each robotic limb has four degrees-of-freedom (DOFs). The SuperLimbs can transfer the load weight to the ground through the rigid structures, thus reducing the weight borne by the human user. A hybrid control strategy is presented to assist the human as well as avoid disturbing user’s natural motions. Motions of the SuperLimb system are generated autonomously to follow the gait of the human user. The gait synchronization is controlled by a finite state machine, which uses inertial sensors to detect the human gait. Human walking experiments are conducted to verify this concept. Experiments indicate that the SuperLimbs can follow the human gait as well as distribute the load weight. Results show that our SuperLimb system can reduce 85.7% of load weight borne by the human when both robotic limbs support and 55.8% load weight on average. This study may inspire the design of other wearable robots and may provide efficient solutions for human loaded walking.
Read More
Journal of Mechanisms and Robotics Open Issues