Latest Papers

ASME Journal of Mechanisms and Robotics

  • Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
    on September 14, 2022 at 12:00 am

    AbstractThis article presents two approaches to obtain the dynamical equations of mobile manipulators using dual quaternion algebra. The first one is based on a general recursive Newton–Euler formulation and uses twists and wrenches, which are propagated through high-level algebraic operations and works for any type of joints and arbitrary parameterizations. The second approach is based on Gauss’s Principle of Least Constraint (GPLC) and includes arbitrary equality constraints. In addition to showing the connections of GPLC with Gibbs–Appell and Kane’s equations, we use it to model a nonholonomic mobile manipulator. Our current formulations are more general than their counterparts in the state of the art, although GPLC is more computationally expensive, and simulation results show that they are as accurate as the classic recursive Newton–Euler algorithm.

Simulation and Analysis of Microspines Interlocking Behavior on Rocky Surfaces: An In-Depth Study of the Isolated Spine


Microspine grippers address a large variety of possible applications, especially in field robotics and manipulation in extreme environments. Predicting and modeling the gripper behavior remains a major challenge to this day. One of the most complex aspects of these predictions is how to model the spine to rock interaction of the spine tip with the local asperity. This paper proposes a single spine model, in order to fill the gap of knowledge in this specific field. A new model for the anchoring resistance of a single spine is proposed and discussed. The model is then applied to a simulation campaign. With the aid of simulations and analytic functions, we correlated performance characteristics of a spine with a set of quantitative, macroscopic variables related to the spine, the substrate and its usage. Eventually, this paper presents some experimental comparison tests and discusses traversal phenomena observed during the tests.

Generated by Feedzy