Latest Papers

ASME Journal of Mechanisms and Robotics

  • Robust Multilegged Walking Robots for Interactions With Different Terrains
    on May 26, 2023 at 12:00 am

    AbstractThis paper explores the kinematic synthesis, design, and pilot experimental testing of a six-legged walking robotic platform able to traverse through different terrains. We aim to develop a structured approach to designing the limb morphology using a relaxed kinematic task with incorporated conditions on foot-environments interaction, specifically contact force direction and curvature constraints, related to maintaining contact. The design approach builds up incrementally starting with studying the basic human leg walking trajectory and then defining a “relaxed” kinematic task. The “relaxed” kinematic task consists only of two contact locations (toe-off and heel-strike) with higher-order motion task specifications compatible with foot-terrain(s) contact and curvature constraints in the vicinity of the two contacts. As the next step, an eight-bar leg image is created based on the “relaxed” kinematic task and incorporated within a six-legged walking robot. Pilot experimental tests explore if the proposed approach results in an adaptable behavior which allows the platform to incorporate different walking foot trajectories and gait styles coupled to each environment. The results suggest that the proposed “relaxed” higher-order motion task combined with the leg morphological properties and feet material allowed the platform to walk stably on the different terrains. Here we would like to note that one of the main advantages of the proposed method in comparison with other existing walking platforms is that the proposed robotic platform has carefully designed limb morphology with incorporated conditions on foot-environment interaction. Additionally, while most of the existing multilegged platforms incorporate one actuator per leg, or per joint, our goal is to explore the possibility of using a single actuator to drive all six legs of the platform. This is a critical step which opens the door for the development of future transformative technology that is largely independent of human control and able to learn about the environment through their own sensory systems.

Simulation and Analysis of Microspines Interlocking Behavior on Rocky Surfaces: An In-Depth Study of the Isolated Spine

Abstract

Microspine grippers address a large variety of possible applications, especially in field robotics and manipulation in extreme environments. Predicting and modeling the gripper behavior remains a major challenge to this day. One of the most complex aspects of these predictions is how to model the spine to rock interaction of the spine tip with the local asperity. This paper proposes a single spine model, in order to fill the gap of knowledge in this specific field. A new model for the anchoring resistance of a single spine is proposed and discussed. The model is then applied to a simulation campaign. With the aid of simulations and analytic functions, we correlated performance characteristics of a spine with a set of quantitative, macroscopic variables related to the spine, the substrate and its usage. Eventually, this paper presents some experimental comparison tests and discusses traversal phenomena observed during the tests.

Generated by Feedzy