Latest Papers

ASME Journal of Mechanisms and Robotics

  • Design of Reconfigurable Articulated Walking Mechanisms for Diverse Motion Behaviors
    on March 20, 2025 at 12:00 am

    AbstractLegged robots are able to move across irregular terrains and those based on 1-degree-of-freedom planar linkages can be energy efficient but are often constrained by a limited range of gaits which can limit their locomotion capabilities considerably. This article reports the design of novel reconfigurable parallel linkages that not only produce different walking patterns but also realize behaviors beyond locomotion. Experiments with an implemented wearable device able to guide the lower extremity through multiple human-like walking trajectories are presented and the preliminary results validate the proposed approach.

  • Modeling, Kinematics, and Dynamics of a Rigid-Flexible Coupling Spring-Cable-Driven Parallel Robot
    on March 20, 2025 at 12:00 am

    AbstractConventional parallel robots are made of rigid materials for the purpose of fast and accurate localization, exhibiting limited performance in large-scale operations. Inspired by the softness and natural compliance of biological systems, this article proposes a rigid-flexible coupling cable-driven parallel robot. The concept of flexible cable and spring hybrid and working principle are introduced. The kinematics of single module and multiple modules connected in series are analyzed and equations are given, and the Lagrange equation is used to establish dynamic models. Finally, two methods are used to validate the kinematics and dynamics. One is to draw the specific structure with the posture of the end-effector and measure the cable length to compare it with the analytical solution in the kinematic model. The other is to build the structure and joint characteristics in simulink, given the posture of the end-effector and the external force/torque, the cable length and the force applied are compared with those obtained from the dynamic model. The reasonableness of the mechanism and the feasibility of the kinematic and dynamic models are verified.

Design of an Accurate and Stiff Wooden Industrial Robot: First Steps Toward Robot Eco-sustainable Mechanical Design

Abstract

This article investigates the feasibility of replacing metal robot links by wooden bodies for eco-sustainable design’s purpose. Wood is a material with low environmental impact and a good mass-to-stiffness ratio. However, it has significant dimensional and mechanical variabilities. This is an issue for industrial robots that must be accurate and stiff. To guarantee stiffness and accuracy performance of a wooden robot, we propose an integrated design process combining (i) proper wood selection, (ii) adequate sensor-based control strategies to ensure robot accuracy, and (iii) a robust design approach dealing with wood uncertainties. Based on the use of this integrated design process, a prototype of a wooden five-bar mechanism is designed and manufactured. Experimental results show that it is realistic to design a wooden robot with performance compatible with industry requirements in terms of stiffness (deformations lower than 400 μm for 20 N loads) and accuracy (repeatability lower than 60 μm), guaranteed in a workspace of 800 mm × 200 mm. This study provides a first step toward the eco-sustainable mechanical design of robots.
Read More
Journal of Mechanisms and Robotics Open Issues